
SGSDesigner, the ODESGS Environment User Interface
Asunción Gómez-Pérez
Ontology Engineering Group

Campus de Montegancedo s/n,
28660 Boadilla del Monte, Madrid. Spain.

(+34) 913367439

asun@fi.upm.es

Rafael González-Cabero
Ontology Engineering Group

Campus de Montegancedo s/n,
28660 Boadilla del Monte, Madrid. Spain

(+34) 913367439

rgonza@fi.upm.es
ABSTRACT
In this demo, we will show SGSDesigner, the ODESGS
Environment user interface. ODESGS Environment (the
realization of the ODESGS Framework [1]) is an environment for
supporting both a) the annotation of pre-existing Grid Services
(GSs) and b) the design of new complex Semantic Grid Services
(SGSs) in a (semi) automatic way. In the demo we will focus in
the annotation of a WSRF GS, using the annotation process
proposed by the ODESGS Framework.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools and Techniques-
user interfaces

General Terms
Design, Theory.

Keywords
Semantic Grid Services, Problem-Solving Methods.

1. INTRODUCTION
GSs are defined as a network-enabled entity that offers users
some capabilities. In order to make them computer-interpretable,
user-apparent and agent-ready, we annotate them with formal and
explicit semantics.
Our proposal for annotating GS (and designing new complex SGS
from these annotated ones) is the ODESGS Framework [1]. It
uses ontologies and Problem-Solving Methods (PSMs) to describe
the features of GS operations (a PSM is defined as a domain-
independent and knowledge-level specification of the problem
solving behavior that can be used to solve a class of problems
[2]).
The process of annotating a GS in the ODESGS Framework (what
we will show in this demonstration) starts with the creation of the
knowledge level description (step 1 in Figure 1). Once this GS
knowledge level description is created (the GS can be optionally
checked, step 2), it can be automatically translated into different
representational instantiations (the last step in Figure 1). The
knowledge and representational level descriptions are both
attached to the GS by means of Semantic Bindings [3](S-
Bindings), allowing thus that a single GS may have multiple
descriptions, which could be expressed in different languages and
formalisms.
As we have already stated, ODESGS Environment realizes the
ODESGS Framework. Therefore the front-end of the ODESGS
Enviroment should be a graphical user interface that gives support
to all these steps of the annotation process shown in Figure 1.
This interface, on the one hand, should allow the easy creation of
these knowledge level specifications (i.e. should facilitate

knowledge entities creation), and on the other hand, should aid
the user to attach pre-existing GSs to these descriptions (i.e.
should facilitate S-Bindings creation). Finally, it must be able to
communicate with different translators. Therefore, SGSDesigner
current main features are:

Representational
Level

Language
Dependant
Description

Grid
Service

DT
KR

PSM
SGS
VO

DT
KR

PSM
SGS
VO

Knowledge Level

Semantic
Binding

Language
Dependant
Semantic
Binding

Checking
ModelInstance

Model

Translation
Model

1 2

3
Grid

Element

Knowledge
Element

Grid Service
Description

Knowledge
Element

Figure 1 ODESGS Framework Annotation Process.

 Knowledge level descriptions are made in a graphical

fashion. The user is not aware of the formalisms used to
represent the service; the whole design of the PSMs and other
diagrams is carried out just by drawing or dragging and
dropping knowledge components.

 Semantic markup export capable. Once the knowledge level
description and the S-Bindings are defined, an RDF(S)
representation of them can be automatically generated. The
service model that is used is being developed in the Ontogrid
Project1.

 Multiple and heterogeneous ontologies handling. The editor
can use OWL and RDF(S) ontologies stored in files or
ontologies available in any instance of the WebODE ontology
workbench.

 WSRF Compliant. Currently, SGSDesigner is able to annotate
WSRF2 GSs, as it will be described later.

2. SGSDesigner
The SGSDesigner design has been inspired in the classical
representation of PSMs. It includes hierarchical trees of tasks
(abstract domain independent operations) and methods (abstract
domain independent reasoning processes); input/output
interaction diagrams of the tasks; diagrams about how the sub-
tasks that compose a method are orchestrated; and data flows that
describe data exchange of the sub-tasks. Let us describe each of
the elements of this user interface.

1 http://www.ontogrid.net
2 http://www.globus.org/wsrf/specs/ws-wsrf.pdf

Workspaces are the main components of SGSDesigner. They are
the concept of projects in software development tools. They
contain the definitions of knowledge components and provide all
the mechanisms and diagrams for both defining and storing them.
Therefore, before we start working with SGSDesigner for creating
the description of the service, we will select, at least, one
workspace to use.
Workspaces have two general areas: trees and views (they are
identified in Figure 2). Let’s describe their intended use in detail.

Tasks/
Methods

Trees

Tasks/
Methods

Trees

Service DefinitionService Definition

Operation DefinitionOperation Definition

Interaction/Logic DiagramInteraction/Logic Diagram

TreesTrees

ViewsViews

Ontologies
Tree

Ontologies
Tree

Figure 2 SGSDesigner Workspace.

Trees show the hierarchy of the knowledge components, such as
tasks, methods, and ontologies elements.

 Ontologies trees. These trees show the concepts and attributes
of the ontology (or ontologies) used to specify all the
knowledge components. They can import the concepts and
attributes that will be shown in the ontology tree. Then, the user
could drag the icons representing a concept/attribute and drop
them into the diagrams that enable the specification of the
input/output roles of the tasks and methods.

 Tasks(Methods) tree. This tree allows users to create the tasks
(methods) associated to the functional features of the
operations. Once the tasks (methods) have been created, the
user can drag, from this tree, the node representing a task
(method) and drop it into the diagrams.

Views allow users to specify all the features of the knowledge
components that describe a service, and they are represented as
tabs:
 Definition View is used to specify the non-functional features
of a service of the service (e.g., name, description, URL,
providers, etc.) and the functional properties of each of its
operation. Each of these operations is described by associating
it to a task (what the operation does) and to a method (how the
method performs this task). The operation task is defined by
means of two diagrams: the Interaction Diagram, which
specifies the type of the inputs/outputs of the task; and the
Logic Diagram, which contains the pre/post-conditions,
assumptions and effects of the task. They are shown as colored
rectangles.
Methods are described by these diagrams plus the
Knowledge/Control Flow Views.

 Decomposition View. This tree-like view allows users to
specify the hierarchy of tasks and methods. Composite methods
are decomposed into sub-tasks, which will be solved by other

methods, and so forth. The leaves of a decomposition diagram
are atomic methods.

 Knowledge Flow View. This view defines the data flow and the
relationship between the inputs/outputs of the sub-tasks of a
composite method.

 Control Flow View. This view describes the control flow of
composite methods. The elements of this view are the sub-tasks
of the method plus some workflow constructions (e.g. if-then,
while-until, split and join, etc.)

In the demo, as we will annotate a pre-existing WSRF GS, we
will create a task and its describing atomic method. Nevertheless,
we will also briefly show how to use all these views to create a
complex SGS, creating thus several task and several composite
methods.

2.1 WSRF Annotation
Once the knowledge level description of the SGS has been
created with the aforementioned views and trees, we will use the
WSRF Import Wizard. It will guide us through several steps,
which will finally associate each of the operations (and its inputs
and outputs) of the GS to the knowledge level description of these
operations (and the input and output roles of its associated task as
Figure 3).

WSRF
Operation

Tree

WSRF
Operation

Tree

Semantic
Binding

Tree

Semantic
Binding

Tree
Task

Interaction/Logic Diagram
Task

Interaction/Logic Diagram

Operation Annotation DialogOperation Annotation Dialog

Figure 3 WSRF Service Annotation.

Finally, we will obtain the RDF instance of both the GS
description and/or the S-Binding.

3. ACKNOWLEDGMENTS
This work has been partially financed by the Ontogrid Project
(FP6-511513) and by a grant provided by the Comunidad
Autónoma de Madrid (Autonomous Community of Madrid).

4. REFERENCES
[1] C. Goble, A. Gómez-Pérez, R. González-Cabero, M.

Pérez-Hernández (2005) ODESGS Framework,
Knowledge-based annotation and design of Grid
Services, ICSOC 2005 341-352

[2] E.Motta (1999): Reusable Components for Knowledge
Modeling, IOS Press

[3] I. Kotsiopoulos, P. Alper, O. Corcho, S. Bechhofer, C.
Goble, D. Kuo, P. Missier Ontogrid Deliverable D1.2
Specification of a Semantic Grid Architecture October
7th, 2005

